
An Independent Study on the Performance, 
Accuracy and Reliability of uHoo Smart Air Monitor 
in a Laboratory and Real Indoor Environment

An independent study to evaluate the performance of 
low-cost monitors for real-time measurement of indoor 
air quality was conducted by Dr. Alberto Baldelli, a scien-
tist from the Mechanical Engineering Department at the 
University of British Columbia in Vancouver, Canada. He 
evaluated the performance of the sensors of the uHoo 
Smart Air Monitor, which are:

- Temperature
- Relative Humidity
- Air Pressure
- Dust (PM2.5)
- Carbon dioxide (CO2)
- Carbon monoxide (CO)
- Nitrogen dioxide (NO2)
- Total Volatile Organic Chemicals (TVOCs) 
- Ozone (O3) 

SUMMARY

These pollutants are important to monitor and measure 
because concentration levels beyond thresholds lead to 
health conditions such as asthma, allergies, and even 
increased risk of virus transmission.

The study sought to validate the correlation and 
cross-sensitivity of each uHoo sensor compared to 
reference methods in both a stable laboratory platform 
and a real indoor environment. It is noteworthy that this 
is the first study to show the full process of developing 
a laboratory platform that can validate the effectiveness 
of indoor air quality sensors and measurements of IAQ 
of low cost monitors in real environment.

The independent study was published in the scientific 
journal Measurement: Sensors on July 26, 2021 and 
made available digitally by Science Direct.



The findings confirmed good correlation between the 
uHoo sensors and reference methods for readings of 
the 9 air quality factors in both the laboratory setting 
and the real indoor environment. It revealed how the 
uHoo Smart Air Monitor is capable of detecting com-
mon household pollutants - parameters that aren’t only 
suitable for gauging virus transmission risks, but also 
asthma and allergen triggers. 

FINDINGS

Study results also show that uHoo’s sensors were 
capable of detecting changes in indoor levels of these 
pollutants with a small margin of error. 

uHoo Smart Air Monitor’s high correlation with 
reference methods, low cost, and ease of use make it 
a compelling choice for measuring pollutants indoors 
to improve indoor air quality and create healthier living 
environments.
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Evaluation of a low-cost multi-channel monitor for indoor air quality 
through a novel, low-cost, and reproducible platform 

Alberto Baldelli 
Department of Mechanical Engineering, University of British Columbia, Canada  

A B S T R A C T   

Short-term exposures to indoor air contaminants can cause adverse health impacts and warrant a need for real-time measurements. The most common indoor 
pollutants are carbon dioxide (CO2), carbon monoxide (CO), ozone (O3), nitrogen dioxide (NO2), total volatile organic compounds (TVOCs), and particulate matter 
with a diameter of less than 2.5 μm (PM2.5). Several low-cost monitors for indoor air quality are commercially available; however, few of them are accurately tested. 
A stable, easy to use, and reproducible platform was developed in this paper. In these laboratory conditions, the comparison between the low-cost sensors and 
calculated concentration was shown to be linear (R2 of 0.980, 0.972, 0.990, 0.958, 0.987, and 0.816 and rs of 0.982, 0.985, 0.900, 0.924, 0.982, and 0.571 for PM2.5, 
CO2, CO, NO2, TVOC (ethylene), and O3 respectively). Laboratory conditions were used to test possible cross-interferences to the TVOC sensor; an increase of CO2, 
CO, and NO2 of 2500 ppm, 100 ppb, and 100 ppb respectively generated a change in the curve fit from linear to quadratic. A complete validation of a low-cost sensor 
was achieved by its application in a real indoor place. Good correlation between the reference methods and uHoo measurements of PM2.5, CO2, and O3 was achieved 
(rs = 0.765 to 0.894, 0.721 to 0.863, and 0.523 to 0.622 respectively).   

1. Introduction 

Human beings spend about 87% of their time indoors, in buildings 
which are filled with pollutants of different types that, even in short- 
term exposure times, affect human health [1]. The most common in-
door air pollutants measured are particulate matter smaller than 2.5 μm 
in diameter (PM2.5), carbon monoxide (CO), carbon dioxide (CO2), ni-
trogen dioxide (NO2), volatile organic compounds (VOCs), and ozone 
(O3). The most common size of particulate matter (PM) measured is 
PM2.5 since it has been linked with cardiovascular and respiratory dis-
eases [2,3]. 

Humans are bad at perceiving the indoor pollutants listed above [4]. 
Consequently, measurements of indoor pollutants are needed to mitigate 
the risks to the health of building occupants. The United States Envi-
ronmental Protection Agency (EPA) has established federal reference 
methods to accurately test each pollutant. Examples are filter-based 
gravimetric sensors for PM and chemo-adsorption for certain volatile 
organic compounds [1,5,6]. Even though these methods provide high 
accuracy and temporal resolution, the techniques are impractical for 
many studies [7]. Major issues include the need for quality control 
checks, frequent calibration, high cost, and requirement of an operator 
with specialized skills. Furthermore, these reference methods provide a 
level of accuracy that is unnecessary for many applications. However, 
the raise of interest in low-cost sensors and monitors is due, besides their 
affordability and easy accessibility, to some of the disadvantages in 

reference methods. For example, reference methods are very limited to 
one pollutant and in order to validate the IAQ, multiple reference 
methods would be needed [8]. In this cases, low-cost sensors are usually 
used even though their data might be less accurate but potentially still 
actionable [9]. 

Several sensors are available for the detection of PM2.5 [10–14]. All 
of these low-cost sensors use optical light scattering. They are compact, 
low weight, energy efficient, and have a high sampling frequency [15]. 
Gaseous pollutants such as carbon monoxide (CO), nitrogen dioxide 
(NO2), ozone (O3), and volatile organic compounds (VOCs) can be 
detected using miniature photoionization detectors (PIDs), electro-
chemical (EC) sensors, or metal-oxide semiconductor (MOx) sensors. Of 
these sensors, PIDs have a major disadvantage: the inability to ionize 
different VOCs equally. As a result, EC and MOx sensors have been used 
in recent studies on the development of low-cost sensors for pollutant 
gases [16]. To detect CO2, low-cost sensors use non-dispersive infrared 
absorption (NDIR) [17]. A few research studies demonstrated that 
low-cost NDIR sensors provide an accuracy that is sufficient for indoor 
applications [18–20]. 

Using standalone sensors to evaluate the quality of indoor air can be 
inconvenient. To remedy this issue, a vast number of low-cost sensors for 
indoor air quality (IAQ) have been developed in the last few decades to 
measure many types of pollutants simultaneously. These devices can 
easily collect large datasets that can be used to generate information on 
the variation of pollutant levels throughout the day. Real-time monitors 
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can also alarm when the acceptable limits are exceeded, allowing quick 
action to minimize the pollutant. 

Few commercially available low-cost, multi-channel monitors have 
been accurately calibrated [8,16,21–23]. Laboratory tests are funda-
mental to determine response time, limit of detection, and the linearity 
of response [1]. For PM, laboratory tests are necessary to determine 
additional properties of the sensors, such as the influence of the par-
ticulate type and size on readings [12,24,25]. In most previous studies, 
laboratory tests use a reference method as a comparison to the readings 
of each sensor [26]. As noted above, these reference methods can be 
expensive and require a skilled operator to accurately function. As well, 
current laboratory platforms have trouble with validating the 
cross-interference between two sensors contained in a low-cost monitor 
[27]. Furthermore, one of main drawback of low-cost monitors, 
including a variety of sensors, is the possible cross-sensitivity. Labora-
tory tests show a higher accuracy in validating the cross-sensitivity be-
tween several low-cost sensors [16,28]. 

Validating a low-cost monitor also requires testing in a real envi-
ronment where pollutant concentrations can be highly variable. The 
response of a low-cost indoor air monitor to the variability of a real 
indoor environment needs to be validated against reference methods to 
determine the monitor correlation [8,12,16]. 

The objects of this study were 1) to generate a user-friendly, low- 
cost, reproducible, and stable platform to validate a low-cost monitor, 2) 
to validate the correlation and cross-sensitivity of each sensor contained 
in a low-cost monitor compared to reference methods in stable condi-
tions, and 3) to confirm the correlation of some of the sensors included in 
a low-cost monitor compared to reference methods in a real indoor 
environment. As far as the authors know, this study is the first to show 
the full process of generating a laboratory platform, applying that 
platform to validate the efficacy of low-cost sensors, and measurements 
of IAQ of low-cost monitors in real environments. This study aims to be a 
guideline for future investigations focused on a deep and accurate 
validation of low-cost IAQ monitors. 

2. Low-cost multi-channel monitor 

2.1. Low-cost multi-channel monitor used in this study 

The selected low-cost multi-channel monitor was produced by uHoo, 
Limited, Hong Kong, China, Table 1. The information reported in 
Table 1 was kindly provided by uHoo; detectable range, resolution, and 
estimated accuracy were provided by the manufacturers of the single 
sensors included in uHoo monitors [29,30]. 

A series of algorithms have been developed by uHoo to transform the 
raw data from each sensor into user-friendly data showing measure-
ments of each indoor pollutant. The device generates readings each 
minute and auto-calibrates the CO2 sensor every 168 h (7 days) and the 
TVOC, O3 and NO2 sensors every 24 h. This auto-calibration estimates 
exposure levels that the sensor is subject to during operation; then the 
software updates and becomes more accurate to the specific operating 
conditions. Due to this auto-calibration, a 48-h “warm up” period is 

needed for the uHoo monitor to provide better measurements. If the 
warm up is interrupted, it will restart from the beginning the next time it 
is powered on and connected to the network. The warm up is only 
necessary to be completed during first time use under a given operating 
condition. For example, if the monitor is moved between locations in a 
single facility, a second warm up is not necessary. Auto-calibration is 
important because chemical sensors age faster in polluted environments 
and their baselines need to be recalibrated frequently [31]. 

3. Methods 

3.1. Development of a low-cost, stable laboratory platform 

3.1.1. Enclosure 
For all laboratory tests, three uHoo monitors were placed in a 40 L 

enclosure (NBA-10172, Bud Industries, Cleveland, USA), Fig. 1 a). 
Experimental atmospheres were introduced into the enclosure at a flow 
rate close to 10 L/min. Changes in pressure inside the enclosure were not 
recorded. A mini fan (SmartDevil mini fan, SmartDevil, Technology) 
(12 × 4.3 mm) was placed close to the exit to decrease the pollutant 
mixing time in the 40 L enclosure. For more details, please see the SI. 

3.1.2. Particulate matter 2.5 (PM2.5) 
An atomizer was used to produce PM [32–34]. Solutions were 

inserted into the atomizer feeding system, Fig. 1 b. A drier (Aerosol 
Diffusion Dryer, Cambustion, USA) removed the remaining water 
droplets allowing only solid particulates to access the enclosure. An 
Optical Particle Sizer (OPS) (3330, TSI, Shoreview, Minnesota, USA) 
was the selected reference device for a few reasons. It shows a maximum 
difference of 10% with respect to other reference methods [35]. More-
over, the accuracy of OPS measurements was confirmed through com-
parison to gravimetric samples (see SI). The OPS had the added benefit 
of providing information on the particulate size distribution. 

Refractive index, density, and shape factor are some of the aerosol 
properties influencing light scattering, according to the Mie theory [36]. 
The three main properties that impact the quantity of light scattered by a 
single particle are the particle diameter, refractive index, and shape 
factor. The three main properties that impact the quantity of light 
scattered by multiple particles composed of the same material are the 
particulate size distribution, refractive index, and shape factor. Ulti-
mately, particle density influences the association between the particle 
mass ad the quantity of light scattered. Three solutes with different 
density, refractive index, and shape factor were selected. Sodium chlo-
ride, sucrose, and potassium iodide aerosols have a density of 2.16, 1.59, 
and 3.12 g/cm3, a refractive index of 1.58, 1.33, and 1.67, and a shape 
factor of 1.08, 1.9, and 1.08 [37], respectively. These parameters can be 
programed into the OPS, while the uHoo refractive index and shape 
factor are fixed at 1.58 and 1, respectively. 

3.1.3. Gas sensor 
A similar experimental system was created to validate the CO2, CO, 

NO2, and TVOC sensors, Fig. 1 c). The TVOC MOx sensor was tested by 

Table 1 
Detectable range, resolution, and estimated accuracy of the tested low-cost multi-channel monitors.  

Sensor Type Model Detectable range Resolution Estimated accuracy 

PM2.5 Optical scattering Shinyei Kaisha PPD42-60 0–200 μg/m3 0.1 μg/m3 ±20 μg/m3 or 10% of reading 
CO2 NDIR ELT Sensor 400 to 10,000 ppm 1 ppm ±50 ppm or 3% of reading 

T-110-3V 
CO Electrochemical Figaro Engineering 0–1000 ppb 0.1 ppb ±10 ppm 

TGS5342 
TVOC Metal oxide Cambridge CMOS 0 to 1000 ppb 1 ppb ±10 ppb or 5% of reading, based on the types of VOC 

CC881B 
O3 Metal oxide SGX Sensortech 0–1000 ppb 1 ppb ±10 ppb or 5% of reading 

MICS-2714 
NO2 Metal oxide SGX Sensortech MICS-2714 0–1000 ppb 1 ppb ±10 ppb or 5% of reading  

A. Baldelli                                                                                                                                                                                                                                        



Measurement: Sensors 17 (2021) 100059

3

using three different gases: ethylene (EY 3.0 PL-Q, Praxair, Guildford, 
UK), methane (ME 2.0, Praxair, Guildford, UK), and propane (NI PR30C- 
AS, Praxair, Guildford, UK). TVOC sensors are most commonly cali-
brated using isobutylene, although ethylene and propane are also used 
as calibration gases. In addition, low-cost MOx sensors are shown to 
react to methane [16,38]. Thus, by using methane, the response of the 
uHoo TVOC sensor to multiple gases was verified. Furthermore, 
methane and propane are both alkanes; however, methane has different 
bond strengths, which probably plays a role in its oxidation potential 
and therefore it is valuable to test the sensor to methane. 

Two mass flow controllers (MFCs) were used to control the flow of 
both the selected gas and the filtered room air. The MFC used to control 
the filtered room air had a flow range of 0.1–10 L/min (Alicat MC- 
10SLPM, Tucson, Arizona, USA) while the MFC for the gases had a 
range of 0.02–0.2 L/min (Alicat, MC-200SCCM, Tucson, Arizona, USA). 
Since the MFC could only be set for pure gases, a gilibrator (Gilibrator-2 
Calibrator, Sensidyne, St. Petersburg, Florida, USA) was used to cali-
brate the MFC. 

The reference method used for CO2 was a Vaisala CO2 meter (Vaisala 
GMP222, Vantaa, Finland). This CO2 meter has a range of 0–2000 ppm 
with an accuracy of 2%. Details on its calibration are reported in the SI. 
For CO, NO2, and TVOC, theoretical calculations were used as a refer-
ence method. The Continuously Stirred Tank Reactor (CSTR) theory 
[39] was used to calculate the mass concentration of the selected gas 
injected in the enclosure at a certain time, Equation (1). 

c(t)=
Q̇airC0 + Q̇gascgas

Q̇tot
+

⎛

⎜
⎝cin −

Q̇airC0 + Q̇gascgas

Q̇tot

⎞

⎟
⎠e−

Q̇tot t
Ven Equation 1  

Where c(t) is the mass concentration in ppm of the selected gas in the 
enclosure at a certain time t, C0 is the ambient concentration estimated 
in L/min converted from c0 that is the ambient concentration estimated 
to 500 ppm for CO2, 2.5 ppb for CO, 0.1 ppm for TVOC, 7 ppb for NO2, 
and 1 ppb for O3 (2) for indoor environments, Q tot is the total flow rate 
found as a sum of the gas flow rate Q ̇gas and the air flow rates Q ̇air in L/ 
min, Ven is the volume of the enclosure, and cin is the initial concen-
tration in ppm. Equation (1) was applied also to CO2 and O3 in order to 

validate its applicability. 
Fig. 1 d) shows the experimental system used to validate the O3 

sensor in uHoo monitors. An O3 generator (Villa 3000, OdorFree Ma-
chines, Tallahassee, Florida, USA) was placed in an airtight box. Filtered 
air was used to draw a portion of the ozone into the enclosure containing 
the uHoo monitors. Diluted O3 was then directed to a second enclosure 
where the three uHoo monitors were located. The ozone generator 
produced other gases, such as NO2 and CO2, which could potentially 
affect the uHoo O3 sensor readings. However, an O3 meter was used as a 
reference method (UV106L, Oxidation Technologies, Inwood, Iowa, 
USA); this O3 meter works for a range of 1–100 ppm with a resolution of 
0.1 ppb. More details on its validation can be found in the SI. 

3.1.4. Stability of the developed low-cost and stable laboratory platform 
The homogeneity of the distribution of particulate matter and one of 

the gas pollutants in the enclosure was validate. PM2.5 (obtained using 
sodium chloride) and CO2 were the pollutants selected. One of these 
pollutants was introduced in the enclosure at difference concentrations 
(PM2.5 varying from 0 to 300 μg/m3 and CO2 varying from 500 to 3000 
ppm). In case of PM2.5, the inlet of the OPS was placed at different lo-
cations inside the enclosure. In case of CO2, the inlet of the Vaisala meter 
was positioned at different locations. For both cases, measurements 
were recorded between the 40th to the 50th minutes from the injection 
time. This time window was selected since both PM2.5 and CO2 were 
injected at 1 L/min and by having a 40 L enclosure, the chamber was 
expected to be saturated after the 40th minute from each experiment 
starting point. The highest difference between two location was reported 
as an estimation of the homogeneity of the distribution of the pollutant 
tested. Particle and gas mass concentration (μg/m3 and ppm) of minute- 
by-minute data was used. Standard deviations per each location was 
derived by considering a time window of 10 min. 

3.1.5. Validation of the correlation of the low-cost monitors with reference 
methods 

The detectable levels of PM2.5, CO2, CO, TVOC, and NO2 were tested 
in order to evaluate uHoo performance in a controlled environment, 
Table 1. Laboratory tests were repeated five times at each concentration 
of pollutant. PM2.5, CO2, and O3 levels were also measured with a 

Fig. 1. Illustration of the dimensions of the enclosure selected, of the dimensions of uHoo monitors, and of the locations at which uHoo monitors were placed in the 
enclosure for each laboratory experiment. 
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reference device, maintaining the low-cost sensors as the independent 
variable. For these measurements, a sample was considered stable if the 
recorded values differed by less than 2% after 5 min. Data was then 
collected for 20–40 min. Each sample was repeated five times generating 
a total of 100–200 data points. Note that O3 was only tested between 
0 and 20 ppb due to limitations in the laboratory platform. The limit of 
detection of PM2.5 sensors was calculated, as shown in the SI. 

Since the relation between the low-cost sensor readings and the 
reference meter readings or calculated concentrations appeared mono-
tonic, a Spearman’s rank-order correlation (rs) was applied [40] to 
evaluate the correlation between the two measuring methods. To further 
compare uHoo monitors and reference methods, a regression analysis 
was performed. Linear, quadratic, and cubic models were fitted, using 
Origin Pro, to the data to find the most accurate equation (highest 
adjusted R2 and Chi-squared) [41]. Moreover, linear increase was 
calculated over each minute and differences in the increase rates be-
tween low-cost sensors and reference methods were obtained by 
considering the time period of the whole experiment. 

The interference of CO, CO2, and NO2, on the TVOC sensor was 
validated testing varying concentrations of interfering pollutants and 
repeating each test 5 times. Previous studies showed that CO and CO2 
can cause interferences [9] so investigating potential interferences of 
these gases in uHoo monitors was necessary. The interference of NO2 on 
the TVOC sensor was tested since both NO2 and TVOC sensors contained 
in uHoo monitors are of the same type, MOx. To study the 
cross-interference between CO, CO2, NO2, and TVOC, the system shown 
in Fig. 1 c) was slightly modified by adding an extra line that feeds one 
more gas in the enclosure (see SI). CO2 levels of 0, 2500, 5000, 7500, and 
9000 ppm, NO2 levels of 0, 200, 400, 700, and 1000 ppb, and CO levels 
of 0, 100, 200, 300, and 400 ppb, were used to study the impact to the 
response of the TVOC sensor. Other cross-interferences are shown in the 
SI. 

3.2. Verifying the low-cost monitor response to a real indoor environment 

Three uHoo units were placed in a residential building located in 
central Vancouver, Canada, shown in the SI. The study was undertaken 
following the guidelines of the ASTM D72974-14 Standard Practice for 
Evaluating Residential Indoor Air Quality [42]. The low-cost monitors 
and the reference instruments were located at an approximate height of 
1 m over the top of a drawer and at the center of a room [41]. The 
recording period was seven days, from March 31st, 2019 to April 6th, 

2019 (period A) and from October 14th, 2019 to October 20th, 2019 
(period B). PM2.5 and CO2 were measured during period B, while O3 was 
measured during both periods. 

During period A, the building was inhabited, however, major activ-
ities were not recorded. During period B, the building was inhabited by 
anywhere from 0 to 5 people. Common indoor activities occurred, such 
as cooking and cleaning [43]. In addition, two windows in the room 
were opened to introduce more variability to the measurements. More 
details on the building and room in which the sensors were placed are 
reported in the SI. The uHoo readings were obtained as an average be-
tween three sensors placed close to three windows. 

Readings of PM2.5, CO2, and O3 were also measured using the 
reference methods mentioned in the previous section. The period length 
was limited, but was sufficient to compare different measurement 
methods [41]. The OPS and the Vaisala CO2 meter readings were 
continuously operating and 1-min averages were recorded. The O3 
meter was operating for 12 h a day. However, hour-by-hour data re-
ported by the website AirMap (https://gis.metrovancouver.org/maps/ 
air/) were used as further validation of uHoo O3 sensors, see SI. In-
door ozone levels were estimated to be 20–70% of the outdoor levels 
[44]. 

3.3. Statistical analysis 

In order to validate the correlation between the readings of uHoo 
low-cost sensors and reference methods or concentrations calculated 
using theoretical methods, a few parameters were used, such as a 
regression curve, the R2 coefficient of determination, and the Spear-
man’s coefficient (rs). These parameters were calculated using the 
minute-by-minute data, averaged over 30 min for the laboratory tests, 
achieved using both low-cost sensors and reference methods. Standard 
errors and differences between low-cost sensors and reference methods 
data were similarly derived considering the minute-by-minute data over 
the time window of 30 min. Three low-cost sensors were used for the 
statistical analysis. In case of field tests, a Blandt- Altmann plot was 
generated in order to verify the comparison between the low-cost sen-
sors and reference methods. The same statistical approach was used for 
both laboratory and field tests. However, the regression identified in the 
laboratory tests were not applied on the data achieved in a real indoor 
environment. In addition, the standard deviations between the mea-
surements of the three low-cost monitors are reported using minute-by- 
minute data. In some cases, to examine the correlation between data 
generated by the analyzed low-cost monitor, and by reference methods, 
a Bland–Altman analysis was performed over minute-by-minute data 
[45]. An upper and lower bound of 1.96 standard deviations (SD) of the 
difference was applied. Moreno et al. showed that the 1.96 SD limits are 
appropriate to assess the impact of pollution on human health [41]. 

4. Results and discussion 

4.1. Stability of the developed low-cost and stable laboratory platform 

In PM2.5 tests, the difference between the readings of the OPS at 
points A-F was 10.5% (Fig. 2a). Measurements of PM between 1 and 2.5 
μm, the measurable range of uHoo monitor, showed a variability of 
14.8%. The greatest difference in PM counts (17.4%) was found in the 
location farthest from the injection point (Side E in Fig. 2 a), which is 
still considered in agreement with previous literature data [21]. In CO2 
tests, the largest difference between two locations was 17.8 ± 1.3%. This 
high homogeneity ensures that the three uHoo monitors were exposed to 
similar levels of pollutants. Furthermore, the results shown in Fig. 2 
emphasize the stability of the developed laboratory platform to both test 
PM and gas sensors. 

4.2. Validation of the correlation of low-cost monitors with reference 
methods 

Fig. 3a) and b) shows the experiments conducted to determine the 
response of the PM and CO2 sensors, respectively. For the other gases, 
measurements have been recorded only when stable conditions were 
reached in the enclosure (difference of less of 2% in the average of the 
data of reference methods). 

Fig. 3 shows another important parameter of the validation of low- 
cost monitors. uHoo monitors show a close response time compared to 
the reference methods. When a change in conditions is induced, such as 
for times 25–30 min in a) and 0–10 min in b), the average difference in 
increase rates between uHoo monitors and the reference methods is 7 
and 2% for PM and CO2 measurements respectively. In addition, in Fig. 3 
b), the comparison between the reference method (CO2 meter) and the 
calculated concentration is introduced. An average difference between 
the readings achieved using a CO2 meter and the derivations achieved 
using a calculated concentration is 5%; a higher difference (11%) is 
achieved at low levels of CO2 (<200 ppm) possibly due to a difference in 
the assumption in the initial concentration selected in the calculated 
concentration and the actual ppm contained in the enclosure. 

Table 2 and Fig. 5 show the regressions and the box charts obtained 
for each sensor contained in the tested low-cost monitors. Plots of the 
raw data are shown in the SI. PM sensors typically showed a linear 
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regression when compared to reference methods [11,12,25]. However, 
other studies observed nonlinear responses for low-cost sensors [46,47], 
particularly for particles with small diameters and with different optical 
properties (i.e. ammonium nitrate particles [11,21]). For uHoo PM2.5 
sensor, a quadratic regression is chosen when particulates matter made 
of potassium iodide and sucrose are used. Furthermore, the Spearman 
coefficient was lower for sucrose tests and slightly higher for potassium 
iodide tests. More details are shown in the SI, Figure S2. 

The OPS has the advantage of being adjustable for a specific aerosol 
with known optical properties. A sensor’s performance depends on 
particle composition since light scattering is influenced by the refractive 
index. A higher proportion of light can be absorbed by organic 

compounds such as sucrose, due to similar vibrational energy levels of 
carbon bonds. Thus, the phototransistor receives less light in the test of 
sucrose particles, and so reports a lower mass concentration [21,48]. 
Therefore, the uHoo PM2.5 sensor was highly affected by the particle 
type. 

Particle size is also known to affect the particulates measurements 
[11,13,23,49]. Here, we noticed a larger standard error (an average 
20%) for PM concentrations between 50 and 200 μg/m3 compared to 
lower mass concentrations. Moreover, the standard errors increase with 
expected particle mass concentration, Fig. 5. The comparison of uHoo 
PM2.5 with a particle counter that is not based on light scattering would 
deepen the investigation of the impact of the particle type. 

Fig. 2. Homogeneity of the distribution of the PM a) and of CO2 b) in the enclosure. Measurements obtained with OPS a) and with the CO2 meter b) and at six 
different locations in the enclosure were compared. 

Fig. 3. Comparison between the measurements of 
uHoo monitors and the OPS. OPS data between the 
bin of 1–2.5 μm were used (same for uHoo sensors). 
Sodium chloride was used. Darker background tones 
indicate a higher dilution rate as shown in a) and 
comparison between the measurements of uHoo 
monitors and Vaisala CO2 meter is shown in b). The 
error bars are indicated by the lighter done areas 
surrounding the data set. Error bars represent stan-
dard errors derived the experiment repetitions.   

Table 2 
Source, linearity coefficient R-squared, regression type, equation, R2 obtained per each sensor included in uHoo monitors. Comparison with both theoretical methods 
and reference methods are shown. In addition, in the case of PM2.5 and TVOC, different sources are used to verify the response of uHoo sensors. The Spearman’s rank- 
order correlation is calculated to verify the association from one device to another. The last column n stays for the amount of data per each pollutant. The term 
theoretical model identifies the calculated concentrations performed. The variables x and y relate to the data obtained using the reference methods and the low-cost 
sensors, respectively.  

Pollutant Source Corresponding method R2 (Linear) Regression Equation R2 rs 

PM2.5 Sodium chloride OPSa 0.980 Linear y = 18.127 + 0.871ax 0.987 0.982 
Potassium iodide OPSa 0.971 Quadratic y = 14.8 + 1,5 x – 1 × 10− 3 x2 0.991 0.971 
Sucrose OPSa 0.966 Quadratic y = 15.5 + 2.6 x – 0.01 x2 0.983 0.735 

CO2 CO2 Vaisala meter 0.972 Quadratic y = − 462 + 1.8 x – 1.98 x2 0.992 0.985 
CO2 Theoretical model 0.991 Linear y = − 69 + 0.97 x 0.991 0.896 

TVOC Propane Theoretical model 0.997 Linear y = 19.5 + 0.93 x 0.996 0.982 
Ethylene Theoretical model 0.987 Quadratic y = 13.7 + 1.1 x – 1.27 x2 0.993 0.924 
Methaneb Theoretical model 0.997 Cubic y = − 0.84 + 0.97 x +2.34 × 10− 4 x2 – 3.76 × 10− 7 x3 0.993 0.711 

CO CO Theoretical model 0.990 Linear y = 9.74 + 1.11 x 0.990 0.909 
NO2 NO2 Theoretical model 0.958 Quadratic y = 18.2 + 0.81 x – 1.65 x2 0.997 0.924 
O3 O3 

c UV606-L 0.816 Cubic y = 1.34 + 0.42 x – 0.09 x2 + 1.6 × 10− 5 x3 0.994 0.671  

a OPS parameers are set for the solute used as the source. 
b Methane is considered a VOC and is used to verify the response of the TVOC sensor. 
c Emissions from the O3 generator might contain some CO2 and TVOC. 
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The limit of detection (LOD) was measured for the PM sensor and 
was 3.3 ± 1.7 μg/m3; as similar studies [11,21]. The offset of uHoo 
reading at 0 p.m. was about 4.9 ± 1.9 μg/m3, details in the SI. 

Based on the coefficients of R2 (0.972) and Spearman (0.985), along 
with the slope and the intercept of the regression equation, introduced in 
Table 2, uHoo CO2 sensors accurately predict the indoor levels 
compared to a reference device, such as the Vaisala meter. However, the 
Spearman coefficient rs decreases to 0.89 when theoretical methods 
were used as reference methods. Furthermore, the regression type was 
quadratic for a CO2 meter and linear when calculated concentration was 
used. A possible overestimation of the levels of CO2 obtained using 
theoretical methods can occur for levels higher than 1000 ppm. In 
addition, a quadratic regression between readings of low-cost CO2 sen-
sors and a Vaisala meter or a NDIR was defined in previous studies 
[50–52]. In this case, a moderate slope indicates a good correlation 
between low-cost sensors and reference methods. Even though calcu-
lated concentration appears less accurate than the reference method, 
their maximum difference is about 30%. In addition, the main difference 
between the calculated concentration and the CO2 meter can be seen in 
the level between 1300 and 1700 ppm, Fig. 4. By overestimating this 
range, calculated concentration derives a linear regression of the data 
respect to uHoo readings, Table 2. Furthermore, fairly low values of 
intercept and slope validate the good correlation between the two 
methods. 

More detailed investigations on the comparison between calculated 
concentrations and reference methods for pollutants such as TVOC, O3, 
NO2, and CO, would validate the use of calculated concentrations to 
verify readings of low-cost sensors. In any case, as far as the results 
shown in Table 2 and Fig. 4, the suggested calculated concentration can 
be used to validate the trend of low-cost sensor readings by considering 
their possible overestimation. In the case of CO2, a close correlation 
between the calculated concentration and uHoo sensor readings was 
found (rs = 0.99). As in the case of the PM2.5 sensor, the CO2 sensor 
shows standard errors of about 4% for expected levels lower than 1260 
ppm and 26% for expected levels between 1260 and 3500 ppm. These 
differences are considered acceptable for an indoor application since 
indoor levels of CO2 typically vary between 600 and 1000 ppm. In any 
case, uHoo low-cost sensors seem to overestimate the CO2 levels for 
expected concentrations of 1260 ppm, compared to the reference 
method, that could happen in case of an indoor source of pollutant. In 
this case, the intercept of the regression is the highest among all cases 
shown in Table 2. However, indoor concentrations above 1000 ppm 

(even up to 3000 ppm) are also common due to several reasons [53–55]. 
TVOC sensors have high uncertainties compared to other sensors 

[56–59]. Spearman’s coefficient rs was found to be 0.98 and 0.92 when 
comparing calculated concentrations and uHoo readings of propane and 
ethylene respectively. A quadratic regression curve was selected for 
ethylene emissions. While exposed to different levels of propane and 
ethylene, uHoo TVOC sensors readings had standard errors, with an 
average of 35%, Fig. 5. A more detailed study on the selectivity of uHoo 
TVOC sensor would be beneficial to determine which gases generate a 
positive response. Furthermore, a TVOC meter, such as Graywolf [41], 
would be necessary. One drawback in the case of TVOC validation is 
estimating the emissions of one gas (propane or ethylene) and not a mix 
of multiple VOCs, which is a more realistic scenario. 

In general, MOx gas sensors like the uHoo TVOC sensor respond to a 
large variety of gases [60,61]. Even though MOx sensors are highly 
sensitive, they are known to lack selectivity [62]. NO2 and CO are shown 
to interfere with TVOC MOx sensors [62]. The influence of NO2 and CO 
to the TVOC sensor is shown in Table 3 where ethylene is the source gas. 
The regression type changes from quadratic to cubic after the smallest 
interference from NO2 and CO. In addition, the R2 coefficient decreases 
by 0.011 and 0.014 with an increase of 800 ppb of NO2 and 300 ppm of 
CO respectively. These high concentrations of CO, and NO2 can be found 
in places with combustion sources and uncommonly in common 
households. However, when considering small increases of NO2 and CO 
mass levels (200 and 100 ppb respectively) the regression type changes 
from quadratic to cubic, further decreasing the linearity in the rela-
tionship. MOx sensors commonly show a response to practically all 
relevant targets and interfering gases except carbon dioxide (CO2) [62, 
63]. Here, an addition of 2500 ppm of CO2 generates a change in 
regression type from quadratic to cubic and a slight decrease in R2. 
However, indoor environments with 2500 ppm in CO2 are considered 
highly polluted (even though not uncommon [57]) and a lower CO2 
content might generate a much smaller interference to uHoo MOx TVOC 
sensors. Therefore, it could be suggested to consider uHoo TVOC sensor 
behavior at lower NO2 and CO concentrations. 

uHoo CO sensors showed strong correlation with the calculated 
concentration, having a Spearman’s coefficient of 0.90, as well as a small 
value of intercept and slope of the linear regression equation. Electro-
chemical sensors tailored to the detection of CO have been shown to 
yield a linear response to CO levels [16,64–67]. Standard errors 
increased greatly (up to 27%) for CO levels above 400 ppm, Fig. 5; 
however, indoor levels of CO are commonly below 1 ppm and for this 
range [68], uHoo monitors showed good correlation with the calculated 
concentration (maximum difference of 2%). 

Good correlation was also found for the NO2 sensor with Spearman’s 
coefficient of 0.97 as well as an intercept of 18.2, Table 2. Good corre-
lation between MOx NO2 low-cost sensors and reference methods was 
observed in a previous study [1,69]. Here, however, uHoo NO2 sensors 
showed a quadratic regression curve indicating a possible underesti-
mation of NO2 ppm at levels of NO2 above 800 ppb. At these levels, a 
higher number of outliers in the readings were seen, Fig. 5. However, 
most indoor environments do not exceed 200 ppb [68]. 

Lastly, O3 uHoo sensors show poor correlation with the O3 meter (rs 
= 0.57 and a cubic regression). Moreover, a cubic regression curve is 
generating the highest R2; poor linearity of O3 MOx sensors is a known 
property [8]. This trend might be due to the presence of NO2, CO2, and 
CO from the O3 generator; these emissions might interfere with the O3 
uHoo sensor. 

4.3. Verifying the low-cost monitor response to a real indoor environment 

Parameters such as interferences, limits of detection, and impact of 
pollutant mass levels were estimated in laboratory tests. However, field 
tests are the ultimate test for the validation of an indoor low-cost 
monitor. In this project, the response of the uHoo sensors of PM2.5, 
CO2, and O3 are tested in a real indoor environment. 

Fig. 4. A Blandt-Altmann plot between the calculated concentration and the 
CO2 meter readings. 
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Fig. 5. In a), precision of the measurements of PM of uHoo monitors. Readings of PM mass readings achieved using the uHoo monitors and the OPS are compared for 
different PM mass concentrations. Measurements were achieved using sodium chloride and each data point indicate one data set (minute-by-minute data), while the 
area behind the data point indicates the standard errors obtained by comparing the three different low-cost sensors used. Linearity of response and precision of 
measurements for the following gas sensors in uHoo monitors: CO2 b), CO c), NO2 d), and TVOC e). Propane is used as TVOC source. Theoretical calculations and 
uHoo monitors readings were compared. Each data point indicates one data set (minute-by-minute data), while the area behind the data point indicates the standard 
errors obtained by comparing the three different low-cost sensors used. In f), linearity of response and precision of measurements for the O3 sensor in uHoo monitors. 
An O3 meter was used as a reference. Each data point indicates one data set (minute-by-minute data), while the area behind the data point indicates the standard 
errors obtained by comparing the three different low-cost sensors used. 
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Fig. 6, Fig. 7, and Fig. 8 compare the reference methods with uHoo 
sensors for PM2.5, CO2, and O3 respectively. As seen in Fig. 6, the uHoo 
PM2.5 sensors and the reference method showed strong correlation (rs =

0.765 to 0.894). Furthermore, real-time variations of PM2.5 measured by 
different uHoo sensors showed strong correlation (rs = 0.875 to 0.954). 
The uHoo PM2.5 sensors appear to have a zeroing level of 4.5 μg/m3, 
Fig. 6 a). Another effect worth noting is the underestimation by uHoo 
PM2.5 sensors during activity peaks. Activities of cooking, floor cleaning, 
carpet cleaning, and frying generated peak PM levels that varied be-
tween 15 and 45 μg/m3 as measured by OPS. However, when analyzed 
with uHoo PM2.5 sensors the range was 12–35 μg/m3. The difference 
between uHoo PM2.5 sensors and the OPS is clarified by using a Bland- 
Altmann plot, Fig. 6 b). For PM levels below 10 μg/m3, uHoo PM2.5 
sensors are overestimating the indoor level of PM2.5 since they cannot 
detect levels below 4.5 μg/m3. For PM levels above 10 μg/m3, uHoo 
PM2.5 sensors are underestimating PM2.5. This is possibly due to the 
different methods of particle collection. While uHoo PM2.5 sensors 
collect the particles passively, OPS collects particles by drawing air into 
the device at 1 L/min. Only 1.3% of the data exceeded the upper or the 
lower limits of correlation indicating strong correlation between uHoo 
sensors and the reference method. 

Fairly good correlation was also identified between uHoo sensors 
and the reference method for CO2 readings (rs = 0.721 to 0.863). 
Moreover, the difference, averaged over the minute-by-minute data and 
for the whole experiment length, between the readings of the three uHoo 
monitors was about 3.7%, confirming the results shown in Fig. 5. When 
no occupants were present, Fig. 7 a), uHoo CO2 sensors showed higher 
levels compared to the Vaisala CO2 meter (about 35% of difference). 
However, the uHoo CO2 sensors and the Vaisala CO2 meter were 
strongly correlated in the presence of occupants and during activities 
(such as heating and cooking). (rs = 0.863). Furthermore, only 0.4% of 
the data exceeded the upper and the lower limits of correlations, 
emphasizing the close correlation between the two methods, Fig. 7 b). 

For O3 measurements, every peak reported by AirMap, uHoo moni-
tors show a similar trend, Fig. 8 a). However, since the monitors were 
placed indoors, they showed 40–70% lower levels of ozone. The ozone 
values recorded by the ozone meter showed a difference of about 5% 
with respect to the ozone values recorded by uHoo monitors. Fig. 8 b) 
compares readings from the uHoo O3 sensors and the reference method 
O3 meter. The O3 uHoo sensors underestimated indoor O3 levels; in 
addition, 9% of the data exceeded the upper and the lower limits of 
correlation. As expected from laboratory test, uHoo O3 sensors do not 
show strong correlation with respect to a calibrated O3 sensor (rs =

0.423 to 0.622). Fig. 8 shows the importance of using a real-time 
monitor to verify the influence of the outdoor air on indoor air qual-
ity. Even for the O3 tests, the three uHoo sensors used show an average 
difference, calculated as the average different between the highest and 

Table 3 
Impact of CO2, NO2, and CO to the TVOC sensor. Ethylene is used for TVOC 
measurements. The theoretical method is used to estimate the input masses.  

Gas Masses R2 

(Linear) 
Regression 
type 

Equation R2 rs 

CO2 0 ppm 0.968 Quadratic y = 30.5 + 1.46 
x − 4.25 10− 4 x2 

0.991 0.998 

2500 
ppm 

0.961 Cubic y = − 64.5 +
2.83 x + 3.87 
10− 3 x2 - 2.15 
10− 6 x3 

0.995 0.997 

5000 
ppm 

0.933 Cubic y = 16.32 +
2.81 x + 3.37 
10− 3 x2 - 1.83 
10− 6 x3 

0.979 0.995 

7500 
ppm 

0.891 Cubic y = 75.1 + 2.57 
x + 2.44 10− 3 x2 

+ 9.19 10− 6 x3 

0.964 0.990 

9000 
ppm 

0.779 Cubic y = 2.34 + 3.91 
x + 4.72 10− 3 x2 

+ 1.95 10− 6 x3 

0.959 0.987 

NO2 0 ppb 0.962 Quadratic y = − 16.5 +
1.91 x - 1.02 
10− 3 x2 

0.990 0.996 

200 
ppb 

0.960 Cubic y = 40.2 + 0.51 
x - 2.12 10− 3 x2 - 
1.98 10− 6 x3 

0.993 0.987 

400 
ppb 

0.955 Cubic y = 26.5 + 0.68 
x - 1.12 10− 3 x2 - 
9.82 10− 6 x3 

0.988 0.986 

700 
ppb 

0.950 Cubic y = 5.17 + 0.74 
x - 7.07 10− 4 x2 - 
6.78 10− 7 x3 

0.996 0.994 

1000 
ppb 

0.941 Cubic y = 10.7 + 0.53 
x - 1.23 10− 3 x2 - 
1.13 10− 6 x3 

0.986 0.998 

CO 0 ppb 0.971 Quadratic y = = 16.4 +
1.91 x + 1.12 
10− 3 x2 

0.983 0.998 

100 
ppb 

0.962 Cubic y = − 68.1 +
4.25 x - 7.9 10− 3 

x2 + 5.21 10− 6 

x3 

0.979 0.994 

200 
ppb 

0.923 Cubic y = − 67.8 +
4.78 x - 9.2 10− 3 

x2 + 6.25 10− 6 

x3 

0.972 0.991 

300 
ppb 

0.901 Cubic y = − 62.4 +
4.98 x - 9.3 10− 3 

x2 + 6.11 10− 6 

x3 

0.977 0.983 

400 
ppb 

0.816 Cubic y = − 56.7 +
5.64 x - 1.3 10− 2 

x2 + 6.87 10− 6 

x3 

0.960 0.979  

Fig. 6. p.m.2.5 levels between October 12, 2019 and October 18, 2019 measured using three uHoo monitors and an Optical Particle Sizer (OPS) a). Bland–Altman plot 
of the correlation between the uHoo monitors and the OPS, b). 
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lowest O3 concentration measured at each timestamp, of 2.6%, 
emphasizing the precision between different sensors. Placing more 
sensors in the same space provided a more robust measurement; the 
redundancy of the acquired data from several monitors provided higher 
confidence and robustness to the dataset. 

In general, field tests showed that uHoo sensors could identify the 
trend and sudden rises in indoor levels of PM2.5, CO2, and O3, within a 
small margin of error. High correlation with reference methods, low-cost 
efforts, and ease of use make uHoo monitors an appealing alternative to 
measure indoor levels of pollutants. Further work will examine the 
comparison between the other sensors included in uHoo monitors and 
the relative reference methods. 

5. Conclusion 

A laboratory platform was implemented to validate the performance 
of uHoo low-cost multi-channel monitors. High homogeneity, low costs, 
and ease of use make this platform applicable to a broad range of low- 
cost monitors. In addition, the use of theoretical calculations can 
decrease the costs involved in the rental or purchase of rather expensive 
reference methods; for CO2, theoretical calculations agreed with the 
reference method, a CO2 meter, with a maximum difference of 5%. The 
main limitation of the laboratory platform related to ozone tests. The 
selected ozone generator did not produce more than 100 ppb of ozone; 
however, this level is expected to represent a maximum for indoor en-
vironments. Furthermore, the homogeneity of ozone measurements was 
about 25%. Another limitation was the lack of collecting real data as a 

comparison to theoretical calculations for CO, TVOC, and NO2. 
The tested low-cost monitors are estimated to generate reliable re-

sults when tested in laboratory conditions; the R-squared and the 
Spearman’s Rank Correlation Coefficient (rs) are above 0.8 and 0.6 for 
all the tested sensors. Even though the rs is above 0.98, PM2.5 sensors 
were limited by a minimum reading of about 4.8 μg/m3. PM2.5 sensors 
also showed a difference in their response when exposed to particulates 
with different refractive indexes. Furthermore, low levels of CO, NO2, 
and CO2 showed a change in the linearity response of uHoo TVOC 
sensors. Based on these limitations, future improvements of uHoo 
monitors should involve the PM2.5 limit of detection, TVOC selectivity, 
and cross-interference to the TVOC sensor. 

A good level of correlation was found between the uHoo monitor 
readings and reference methods when recording levels of common in-
door pollutants in a residential building; the Spearman’s coefficients 
varied between 0.765 and 0.894 for PM2.5, 0.721 to 0.863 for CO2, and 
0.423 to 0.622 for O3. Differences in the readings of sensors placed in the 
same location did not exceed 5%. However, the use of more than one 
unit to record the indoor pollutants in one space might be recommended 
since more robust results can be generated. The high correlation with 
reference methods, low cost, and ease of use make uHoo monitors 
applicable for the detection of common indoor pollutants in residential 
households. The other sensors included in the uHoo monitors were not 
considered and future studies on their validation are forthcoming. 

Fig. 7. CO2 levels between October 12, 2019 and October 18, 2019 measured using three uHoo monitors and a Vaisala CO2 meter a). Bland–Altman plot of the 
correlation between the uHoo monitors and the Vaisala CO2 meter, b). 

Fig. 8. In a), comparison between the hour-by-hour ozone readings of uHoo monitors (red, blue, and green lines) and ozone meter (black line) is shown. In b), a 
Blandt- Altmann plot represents the comparison between uHoo and O3 meter readings. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the Web version of this article.) 
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